PHY1CJ 101 - FUNDAMENTALS OF PHYSICS

BSc PHYSICS HONOURS

Core in Major PHY1CJ101/PHY1MN100 FUNDAMENTALS OF PHYSICS

Programme	B.Sc. Phys	B.Sc. Physics Honours							
Course Title	FUNDAM	FUNDAMENTALS OF PHYSICS							
Type of Course	Core in N	Core in Major							
Semester	I	I							
Academic Level	100 ~ 19	100 ~ 199							
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours				
	4	3	-	2	75				
Pre- requisites	Fundamentals of vectors, calculus and kinematics.								
Course Summary	This cours applied to	se explores Newto o solve different m	on's Laws of M nechanical syst	otion and how they ems.	/ can be				

	FYUGP Physics
	Demonstrate a profound understanding of knowledge trends and their impact on the chosen
PO1	discipline of study.
	Become a team player who drives positive change through effective communication,
PO2	collaborative acumen, transformative leadership, and a dedication to inclusivity.
	Demonstrate professional skills to navigate diverse career paths with confidence and
PO3	adaptability.
	Demonstrate proficiency in varied digital and technological tools to understand and interact
PO4	with the digital world, thus effectively processing complex information.
	Emerge as an innovative problem-solver and impactful mediator, applying scientific
PO5	understanding and critical thinking to address challenges and advance sustainable solutions.

	Become a responsible leader, characterized by an unwavering commitment to human values,
PO6	ethical conduct, and a fervent dedication to the well-being of society and the environment.
PO7	Emerge as a researcher and entrepreneurial leader, forging collaborative partnerships with industry, academia, and communities to contribute enduring solutions for local, regional, and global development.

PSO1	Understand concepts and applications in the field of Physics viz. Mechanics, Electrodynamics, Thermodynamics, Optics, Quantum Mechanics, Electronics etc.
PSO2	Develop the skills for experimentation to measure, analyse and interpret empirical data, and present the results in a methodical and accessible way.
PSO3	Evaluate complex real-world problems by applying principles of theoretical and applied physics, and mathematical and computational models.
PSO4	Design and execute a Project to solve real-world problems in accordance to the need of the industry and academic research, in a stipulated time frame.
PSO5	Develop understanding of the fundamental concepts of Physics needed for a deeper study of related fields of knowledge viz. Mathematics, Chemistry, Electronics, Computer Science, Geology etc.
PSO6	Develop the experimental and analytical skills in Physics that can be of useful applications in allied areas of knowledge.

CO's	CO Description	Тах	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PS O6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	Summarize the concepts of Newton's Laws of Motion	Un	3	0	2	0	2	1	3	3	1	1	2	2	1
CO2	Apply Newton's Laws of CO2 Motion to solve different mechanical systems		3	2	2	0	1	2	3	3	3	1	3	3	3
CO3	CO3 Apply work- energy theorem to solve different mechanical systems		3	2	2	0	1	2	3	3	3	1	3	3	3
CO4	Analyse conservative systems and solve them using the conservation	An	3	2	2	3	1	2	3	3	3	1	3	3	3

	of mechanical														
	energy.														
	Demonstrate														
	thinking and														
	problem-														
	solving skills														
	by applying					<u>_</u>			-				-		
CO5	the concepts		3	2	3	0	3	3	3	3	3	1	3	3	3
	and techniques														
	learned to														
	solve an														
	extended set of														
	real-world														
	problems.	Un													
	Demonstrate														
	skills to set up														
	and perform														
	experiments to			-					-	_	-		-		-
CO6	test Newton's	Un	3	3	3	3	1	3	3	3	3	1	3	3	3
	Laws of														
	Motion and														
	related														
	concepts.														

Detailed Syllabus:

Module	Unit	Content	Hrs (45 +30)	Mar ks (70)
I		NEWTON'S LAWS OF MOTION	12	18
	1	Review of units, physical quantities and vectors	3	
	2	Force and Interactions	2	
	3	Newton's First Law	2	

4	Newton's Second Law	2	
5	Mass and Weight	1	
6	Newton's Third Law	1	
7	Free-Body Diagrams	1	
Relevan of chap	t topics of chapter 1 of Book 1 ; sections $4.1-4.6$ ter 4 of		
Book 1			
Self-Stu	dy: Chapters $1-3$ of Book 1		

II		APPLYING NEWTON'S LAWS	14	20
	8	Using Newton's First Law: Particles in Equilibrium	3	
	9	Using Newton's Second Law: Dynamics of Particles	3	
	10	Apparent Weight and Apparent Weightlessness	1	
	11	Friction Forces	2	
	12	Fluid Resistance and Terminal Speed	1	
	13	Dynamics of Circular Motion	3	
	14	The Fundamental Forces of Nature	1	
	Sect	ions 5.1 - 5.5 of chapter 5 of Book 1		
111		WORK AND KINETIC ENERGY	8	14
	15	Work	1	
	16	Kinetic Energy and the Work - Energy Theorem	3	

	17	Work and Energy with Varying Forces	3	
	18	Power	1	
	Sect	ions $6.1 - 6.4$ of chapter 6 of Book 1		
IV		POTENTIAL ENERGY AND ENERGY CONSERVATION	11	18
	19	Gravitational Potential Energy	3	
	20	Elastic Potential Energy	2	
	21	Conservative and Nonconservative Forces	2	
	22	Force and Potential Energy	2	
	23	Energy Diagrams	2	

	Section	Sections 7.1 – 7.5 of chapter 7 of Book 1							
V		PRACTICALS	30						
	Con deci 6 th expc liste cours	uct any 5 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The periment may also be selected from the given list. Other experiments here may be used as demonstrations of the concepts taught in the							

	Error Analysis: Lecture/ Tutorial/ Seminar: 2 hrs.	
	Theory of experiments 1 and 2 can be given as Assignment/	
	Seminar.	
	Plot the graphs using GeoGebra. FitLine function may be used to get the slope.	
	Smartphones are exclusively intended for educational lab use. Necessary care should be taken to safeguard them during the experiments.	
	Smartphone experiments primarily serve demonstration purposes, with result accuracy contingent upon the precision of phone sensors and experimental setups.	
	Young's Modulus of the Material of a Given Bar: Uniform Bending	
1	 Use an optic lever and telescope. Take measurements for a minimum of two lengths. Obtain the elevation (e) from the shift (s) in the telescope reading and calculate Y from it. 	
	- For each length of the bar, plot the load-elevation graph (using GeoGebra) and obtain ${ m m/e}$, and then calculate Y from it.	
	 Estimate the random error in the measurements and the error of the result using propagation of the error formulae. 	
	Young's Modulus of the Material of a Given Bar: Non-Uniform Bending	
2	 Use a pin and a microscope. Take measurements for a minimum of two lengths. Obtain the depression (e) from the shift in the microscope reading and calculate Y from it. 	

For each length of the bar, plot the load-depression graph (using GeoGebra) and obtain m/e, and then calculate Y from it.
Estimate the random error in the measurements and the error of the result using propagation of the error formulae.

		Verification of Newton's First Law: Equilibrium of a Particle	
	3	 Analyze the two dimensional equilibrium problems using spring / digital force gauges. 	
		- Hang a weight from a chain that is linked at the ring to two other chains, one fastened to the ceiling and the other to the wall. Example 5.3 of Book 1 .	
		 Measure the angle between the chain from the ceiling and the horizontal and the tension in each of the three chains using spring/digital force gauges and verify with the theoretical predictions. 	
		- https://www.youtube.com/watch?v=XI7E32BROp0	
		Coefficient of Static Friction.	
		- Determine the coefficient of static friction between a wooden block and a wooden plane.	
		 Measure the angle at which the wooden block just starts to slide down an inclined wooden plane and hence calculate the static friction coefficient. 	
		- https://www.youtube.com/watch?v=gt8mr6pFSFE	
	4	OR	
		 Place the wooden block on a wooden plane surface and add mass to the pan attached to the block using a string through a frictionless pulley. 	
		- Find the mass required to initiate the sliding of the block.	
		 Different trials can be done by adding mass on the top of the block and hence determine the coefficient of static friction. 	
		- Example 5.13 of Book 1.	
		- https://www.youtube.com/watch?v=MSV6VafiUF4&t=443s	

Acceleration of a Freely Falling Body

- Use the smartphone acoustic stopwatch to determine the duration of a free fall.

- Measure the time of flight of a steel ball for different heights and plot a graph of distance versus. time squared (s vs. t^2). Determine g from the graph.

- Experiment 2 of Book 2.

- Phyphox app may be used. https://phyphox.org/experiment/free-fall-2/

	OR Use ExpEyes kit, electromagnet, and contact sensor to determine the duration of a free fall. <u>https://expeyes.in/experiments/mechanics/tof.html</u> 	
6	 Verification of the Relation of Angular Velocity and Centrifugal Acceleration Use the smartphone gyroscope and the accelerometer. Attach the smartphone to some rotating arrangements and record the data from the gyroscope and accelerometer. Plot angular velocity versus acceleration and verify the relation. Experiment 18 of Book 2. Phyphox app may be used. https://phyphox.org/experiment/centrifugal-acceleration/ 	
7	 Analysis of Bouncing Balls to Determine Gravitational Acceleration and Coefficient of Restitution. After doing the experiment, the student should be able to understand the concept of inelastic collision. Measure the time interval between successive bounces using a digital acoustic stopwatch and hence calculate g and coefficient of restitution Experiment 12 of Book 2 and section 3.3 of Book 1 Phyphox app may be used. https://phyphox.org/experiment/inelastic-collision/ 	
8	 The Nearly Parabolic Trajectories of a Bouncing Ball Perform Experiment 7 using Tracker tool. Track the ball and plot the time versus position graph. Measure the time interval between successive bounces and hence calculate g and coefficient of restitution. Experiment 12 of Book 2 and section 3.3 of Book 1 https://www.youtube.com/watch?v=ocLQFMMLIGw 	
9	 Verification of Newton's Second Law: Atwood's Machine Determine the relationship between the vertical acceleration and the mass difference, using a smartphone accelerometer. The vertical acceleration is registered using the built-in accelerometer of the smartphone. By redistributing the masses of the supports, a linear relationship between the mass difference and the vertical acceleration is obtained. Experiment 8 of Book 2. 	

https://phyphox.org/experiment/acceleration-without-g/

		Analysis of Air Resistance and Terminal Speed to Determine the Drag Coefficient.	
		 Record the motion of a light weight paper cup and analyse it with Tracker tool (https://physlets.org/tracker/). 	
		- Plot acceleration, velocity, and position with time.	
	10	 Repeat the experiment with different mass (by simply stacking the paper cups) 	
		- Determine the Drag Coefficient	
		- Experiment 27 of Book 2.	
		- https://www.youtube.com/watch?v=iujzK3uH1Yc	
		Projectile Motion: Kinematics	
		- Analyse projectile motion as a combination of horizontal motion with constant velocity and vertical motion with constant acceleration.	
		 Drop two balls from a height, one from rest, and other simultaneously projected horizontally. 	
	11	- Analyse the motion of both in the Tracker tool.	
		- Section 3.3 of Book 1	
		- https://www.youtube.com/watch?v=zMF4CD7i3hg	
		- https://www.youtube.com/watch?v=Mi01anodoDE	
		- https://www.youtube.com/watch?v=5I0NLNthJGc	
		Projectile Motion: Energy Conservation	
		- Analyse the motion of the tossing ball / projectile in the Tracker tool.	
		- Plot time versus the x -and y -components of velocity and acceleration.	
	12	 Also plot the kinetic energy, potential energy (build data using define tool) and total energy. 	
		- https://www.youtube.com/watch?v=x0AWRLvgB28	
		- https://www.youtube.com/watch?v=i07HeUWo8xc	
Bo	ooks a	nd Reference	

1. University Physics with Modern Physics (Edn.15) by Young & Freedman (Book 1)

2. Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 2)

- 3. https://phyphox.org/
- 4. https://physlets.org/tracker/
- 5. B.Sc Practical Physics by C L Arora
- 6. Practical Physics by S L Gupta & V Kumar
- 7. Fundamentals of Physics by David Halliday, Robert Resnick and Jearl Walker
 - 8. Physics for Scientists and Engineers by Paul A. Tipler and Gene Mosca
 - 9. Fundamentals of Physics by J. Richard Christman and William J. Francis
 - 10. NPTEL video lectures: https://nptel.ac.in/courses/115106090

Mapping of COs with PSOs and POs :

	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	P S O 6	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
C O 1	3	0	2	0	2	1	3	3	1	1	2	2	1
C O 2	3	2	2	0	1	2	3	3	3	1	3	3	3
C O 3	3	2	2	0	1	2	3	3	3	1	3	3	3
C O 4	3	2	2	3	1	2	3	3	3	1	3	3	3

C O 5	3	2	3	0	3	3	3	3	3	1	3	3	3
C O 6	3	3	3	3	1	3	3	3	3	1	3	3	3

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical Exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark

CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	

Core in Major PHY1CJ102 (ELEMENTS OF MODERN PHYSICS

IMPORTANT: This course is for the Double Major pathway only. It should not be offered for the other four pathways.

Programme	B. Sc. PhysicsHonou	B. Sc. PhysicsHonours							
Course Title	ELEMENTS OF MODERN PHYSICS								
Type of Course	Core in Major								
Semester	I or II (depending u	pon the batc	h in the Dou	ble Major)					
Academic Level	100 – 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week	per week	per week	Hours				
	4	3	-	2	75				
Pre-requisites	Higher secondary Phy	ysics	-	-	-				
Course	The course integrate	es key princi	ples of mod	ern physics, i	ncluding the				
Summary	Special Theory of R	Special Theory of Relativity, wave-particle duality, and the Bohr Atom							
	Model, to provide stu	Model, to provide students with a comprehensive understanding of							
	fundamental concepts	s and their ap	plications in	diverse scienti	fic fields.				

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the principles of special theory of relativity and apply relative stick principles to solve problems	Ар	С	Written exams, quizzes
CO2	Analyse the particle like properties of electromagnet ic radiation	An	С	Problem sets, essays

CU - FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

CO3	Analyse the Wave like properties of particles	An	С	Instructor-create d exams / Home Assignments
CO4	Describe Rutherford- Bohr model of the atom	U	С	Problem-solvin g exams, simulations
CO5	Analyse experimental evidence supporting wave- particle duality (Practical)	An	Seminar Presentati on / Group Tutorial Work	
CO6	Compare and contrast classical and quantum mechanical models (Project, viva)	Ар	Р	Practical Assignment / Observation of Practical Skills / Viva Voce
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)				
 # - Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M) 				

Detailed Syllabus:

Modul	Uni	Content	Hrs	Mark
e	t		(45	s
			+30)	(70)
Ι		THE SPECIAL THEORY OF RELATIVITY	16	22
	1	Classical Relativity	1	
	2	The Michelson – Morley Experiment	1	
	3	Einstein's Postulates and Its Consequences– Relativity of Time,	4	
		Relativity of Length, Relativistic Velocity Addition		
	4	The Lorentz Transformation and Derivations of Relativistic Effects	2	
		from Lorentz Transformations		
	5	Length Contraction, Velocity Transformation, Time Dilation,	2	
		Simultaneity and Clock Synchronization		
	6	The Twin Paradox	1	
	7	Relativistic Dynamics – Relativistic Momentum	2	
	8	Relativistic Kinetic Energy, Total Energy and Rest Energy	2	
	9	Experimental Tests of Special Relativity	1	
	Section	ons 2.1 –2.7, 2.9 of chapter 2 of Book 1	-	
Π		THE PARTICLE – LIKE PROPERTIES OF	10	16
		ELECTROMAGNETIC RADIATION		
	10	Review of Electromagnetic Waves, Interference and Diffraction,	2	
		Crystal Diffraction of X-Rays		
	11	The Photoelectric Effect	2	
	12	Thermal Radiation	2	
	13	The Compton Effect	2	
	14	Other Photon processes	1	
	15	Particles or Waves	1	
	Section	ons 3.1 – 3.6 of chapter 3 of Book 1.		

CU - FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

III		THE WAVE – LIKE PROPERTIES OF PARTICLES	10	16
	16	De Broglie's Hypothesis	1	
	17	Experimental Evidences for De Broglie waves	3	
	18	Uncertainty Relationships for Classical waves	1	
	19	2		
	20	2		
	21	Probability and Randomness, and the Probability Amplitude	1	
	Section	ons $4.1 - 4.7$ of chapter 4 of Book 1		
IV		THE RUTHERFORD – BOHR MODEL OF THE ATOM	9	16
	22	Basic Properties of Atoms ,The Rutherford Nuclear Atom – Rutherford	2	
		Scattering Formula and Its Experimental Verification –		
		The Closest Approach of a Projectile to the Nucleus		
	23	Line Spectra	1	
	24	The Bohr Model	3	
	25	The Franck – Hertz Experiment	1	
	26	The Correspondence Principle	1	
	27	The Failure of the Bohr Model	1	
	Section	ons 5.1 – 5.8 of chapter 5 of Book1. Excluded: sections 5.2.1, 5.3.1, derivation	tion	
	of Ru	therford scattering formula		
V		PRACTICALS	30	
	Cond	uct any 5 experiments from the given list and 1 additional experiment,		
	decid	ed by the teacher-in-charge, related to the content of the course. The 6^{th}		
	exper	iment may also be selected from the given list. Other experiments listed		
	here	may be used as demonstrations of the concepts taught in the		
	cours	e.		

1	Determination of Plank's constant using LEDs	
	• Observe the turn-on voltage, V_0 of LEDs and calculate the	
	value of <i>h</i> . Use at least 4 different colors of LED (with transported easing)	
	• Plot $\frac{1}{r} - V$ graph using Python, fit a straight line to get the	
	slope and estimate the value of h .	
	 Calculate the %error. Programmable voltage source of ExpEYES may be used to find the turn-on voltage. 	
2	Continuous and line spectra- Determination of the wavelengths	
	and photon energy.	
	• Familiarize the initial adjustments and measurements in the spectrometer.	
	 Mount the grating at normal incidence on the spectrometer. Determine the wavelengths of the sodium vapor lamp and calculate the associated photon energy. 	
	 Determine the approximate range of the wavelengths of the 	
	one coloured LED and calculate the associated photon energy.	
	• The readings of the first order spectrum will be enough. Number of lines/m of the grating can be given.	
3	Mercury spectrum- Determination of wavelength and photon energy.	
	• Determine wavelength of any four prominent lines and	
	spectrometer with grating at normal incidence.	
	• The readings of the first order spectrum will be enough. Number of lines/m of the grating may be given	
4	Hydrogen spectrum - Determination of wavelengths and	
	calculation of the Rydberg's constant.	
	• Determine the wavelengths and photon energy in eV of the	
	prominent lines of the Balmer series of the Hydrogen spectrum using a spectrometer with grating at normal	
	incidence.	
	• Calculate the Rydberg's constant and estimate the % error.	
	• The readings of the first order spectrum will be enough. Number of lines/m of the grating may be given.	
5	Wave Packets - Analysis of beats in sound.	
	• The experiment is intended to understand the concept of wave	
	packet, phase and group velocities.	
	• Generate sounds waves of two near frequencies using smartphone/ExpEYES/Function generator and the	

			r	
		superimposed wave can be recorded and analysed using		
		smanphone/ExpE Y ES/CKO Change the separation between the frequencies and compare		
		• Change the separation between the nequencies and compare the results with the theoretical values		
		 https://expeyes.in/experiments/sound/heats.html 		
		• Multi Tone generator and Audio scope tools of Phyphox may		
		be used https://phyphox.org/experiment/tone-generator/		
	6	Analysis of Hydrogen spectra using the Tracker Video Analysis		
	0	tool.		
		• Calibrate the video of the Hydrogen spectra in the Tracker		
		tool using two laser wavelengths/lines of mercury spectra.		
		• Plot the intensity profile, find the prominent wavelengths of		
		the Balmer series and calculate the Rydberg's constant.		
		• Estimate the %error.		
		• Pre recorded video of the Hydrogen spectra can be used.		
		• https://physlets.org/tracker/.		
		• https://www.youtube.com/watch?v=UCCPkJpUQEw		
	7	Black body spectrum of Sun -Estimation of surface temperature		
		using the Tracker Video Analysis tool.		
		• Calibrate the video of the solar spectra in the Tracker tool		
		using two laser wavelengths/lines of mercury spectra.		
		• Plot wavelength vs intensity, get λ and using Wein's law		
		calculate the surface temperature		
		 Pre recorded video of the solar spectra can be used 		
	8	Varification of Wain's displacement law and Stafan's law using		
	0	incandescent bulb.		
		• Calibrate the video of the spectra of the incandescent bulb in		
		the Tracker tool using two laser wavelengths/lines of mercury		
		spectra		
		• Plot wavelength vs intensity and note λ .		
		max • Deposit the experiment by increasing the experimentation of		
		• Repeat the experiment by increasing the operating voltage of the increasing the temperature of the		
		source)		
		• From the plots verify the Wein's displacement law and		
		Stefan's law		
	Q	Black hody radiation- total energy output		
	9	Plot Planck's radiation formula		
		• Evaluate the area under the curve and x- axis(total radiance		
		over all wavelengths) by numerical integration and hence		
		verify Stephan's law		
Books an	d Refer	rences:	I	
1. Moder	n Physi	cs (Fourth Edition, an Indian Adaptation) by Kenneth S. Krane (Book 1)		

2. <u>https://phyphox.org/</u>

3. <u>https://physlets.org/tracker/</u>

https://expeyes.in/

- Modern Physics for Scientists and Engineers" by John Morrison
- Concepts Of Modern Physics By Arthur Beiser
- Modern Physics by Raymond A. Serway

Modern physics by Randy Harris

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	0	0	0	0	0	2	0	0	0	0	0	0
CO 2	0	3	2	0	0	0	0	2	0	0	0	0	0
CO 3	0	0	3	2	0	0	0	0	2	0	0	0	0
CO 4	0	0	0	3	2	0	0	0	0	2	0	0	0
CO 5	0	0	0	0	3	2	0	0	0	0	2	0	0
CO 6	0	0	0	0	0	3	0	0	0	0	0	2	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory / Practical Exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
<u> </u>				S
	•	v		•
CO 2	1	1		1
CO 3	1	<i>✓</i>		<i>✓</i>
CO 4	1	1		1
CO 5	1	1		1
CO 6		\checkmark	\checkmark	

PHY1MN 104 Electricity and Magnetism

Programme	B.Sc. Physi	B.Sc. Physics Honours											
Course Title	ELECTRICIT	IY AND MAGNETIS	SM										
Type of Course	Minor (SET	Minor (SET IV: OPTICAL PHYSICS)											
Semester	I	I											
Academic Level	100-199	100-199											
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours								
	4	3	-	2	75								
Pre- requisites	A strong fo thermodyr Proficiency	A strong foundation in introductory physics, including mechanics, thermodynamics, and basic concepts of electricity and magnetism. Proficiency in algebra, trigonometry											
Course Summary	This paper provides students with a solid foundation in the principles of electricity and magnetism, enabling them to apply theoretical concepts to practical scenarios and develop problem-solving skills in electromagnetism.												

	FYUGP Physics								
	Demonstrate a profound understanding of knowledge trends and their								
PO1	impact on the chosen discipline of study.								
	Become a team player who drives positive change through effective								
	communication, collaborative acumen, transformative leadership, and								
PO2	a dedication to inclusivity.								
	Demonstrate professional skills to navigate diverse career paths with								
PO3	confidence and adaptability.								

	Demonstrate proficiency in varied digital and technological tools to understand and interact with the digital world, thus effectively
PO4	processing complex information.
	Emerge as an innovative problem-solver and impactful mediator,
	applying scientific understanding and critical thinking to address
PO5	challenges and advance sustainable solutions.
	Become a responsible leader, characterized by an unwavering
	commitment to human values, ethical conduct, and a fervent
PO6	dedication to the well-being of society and the environment.
	Emerge as a researcher and entrepreneurial leader, forging
	collaborative partnerships with industry, academia, and communities
007	to contribute enduring solutions for local, regional, and global
P07	development.
	Understand concepts and applications in the field of Physics viz.
PSO1	Mechanics, Electrodynamics, Thermodynamics, Optics, Quantum
	Mechanics, Electronics etc.
	Develop the skills for experimentation to measure, analyse and
PSO2	interpret empirical data, and present the results in a methodical and
	accessible way.
	Evaluate complex real-world problems by applying principles of
PSO3	theoretical and applied physics, and mathematical and computational
	models.
	Design and execute a Project to solve real-world problems in
PSO4	accordance to the need of the industry and academic research, in a
	stipulated time frame.
DC 05	Develop understanding of the fundamental concepts of Physics needed
PS05	for a deeper study of related fields of knowledge viz. Mathematics,
	Chemistry, Electronics, Computer Science, Geology etc.
PSO6	Develop the experimental and analytical skills in Physics that can be
	of useful applications in allied areas of knowledge.

			PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PS O6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	Understand														
	electric														
	charge														
	properties,														
	develop														
	ability to														
	visualize														
CO1	electric fields		3	0	2	1	2	2	3	3	2	2	3	2	2
	for various														
	charge														
	distributions,														
	and explore														
	the behaviour														
	of electric														
	dipoles.	Understand													
	Students will														
	apply Gauss's														
	law to														
	calculate														
	electric flux														
	and analyse														
	electric fields,														
600	as well as		2	•	2	0	1	2	2	2	2	2	2	2	2
02	determine		3	2	3	0	1	3	3	3	3	2	3	3	3
	electric														
	potential and														
	potential														
	energy for														
	various														
	charge														
	systems.	Analyze													
	Analyze														
	current,														
	resistance,														
	and EMF in														
	circuits,														
	calculate														
	energy and														
CO3	power in		3	3	2	1	2	3	2	3	3	1	3	3	3
	resistive														
	elements, and														
	apply														
	Kirchhoff's														
	laws to														
	electrical														
	systems.	Analyze													
	Understand														
	the principles														
	magnetism,														
	including														
CO4	magnetic		3	3	3	2	2	2	3	3	3	1	3	3	3
	fields,														
	magnetic flux,														
	and the														
	behaviour of	Apply													

	charged														
	particles and														
	current-														
	carrying														
	conductors in														
	magnetic														
	fields.														
	Understand														
	the concept of														
	electric														
	dipoles,														
	analyze the														
	forces and														
CO5	torques acting		3	2	3	0	3	3	3	3	3	1	3	3	3
005	on them in		5	2	5	U	5	5	5	5	5	1	5	5	5
	uniform														
	electric fields,														
	and relate														
	these to														
	practical														
	applications	Analyze													
	Through														
	practical														
	experiments														
	and														
	theoretical														
	analysis,														
	students will														
	explore														
	applications														
CO6	of Gauss's		3	3	3	3	1	3	3	3	3	1	3	3	3
	law, such as														
	determining														
	charges on														
	conductors														
	and														
	understanding														
	electric														
	potential														
	distributions.	Analyze													

Detailed Syllabus:

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)
------------	----------	---------	--------------------	-------------------

Ι		Electric charge and Electric field	10	16		
	1	Electric charge	3			
	2 Coulomb's law					
	3 Electric field and electric force, Electric field calculation- electric dipole and charged infinite sheet					
	4	1				
	5	Electric dipole: upto force and torque on electric dipole	2			
	Sectio					
II		Gauss's law and Electric potential	16	25		

	6	Charge and electric flux	2					
	7	Calculating electric flux	3					
	8	Gauss's law	2					
	9	Application of Gauss's law	2					
	10	10 Charges on conductors-testing Gauss's law experimentally						
	11	Electric potential energy	3					
	12	Electric potential: upto electric potential of charged conducting sphere	3					
	Sections 22.1-22.5, 23.1-23.3, Book 1							
III		Current resistance and electromotive force	12	18				
	13	Current, resistivity and resistance	4					
	14	EMF and circuits	2					
	15	Energy and power in electric circuits: upto power input to a pure resistance	1					
	16	Theory of metallic conduction	1					
	17	Resistance in series and parallel	2					

	18	Kirchoff law and Power distribution system	2						
	Sections 2	Sections 25.1-25.6, 26.1, 26.2, 26.5, Book 1							
IV		Magnetic field and magnetic forces							
	19	Magnetism, Magnetic field	2						
	20	Magnetic field lines and magnetic flux	2						
	21	21 Motion of charged particle in a magnetic field							
	22 Magnetic force on a current carrying conductor-straight conductor								
	Sections 2	27.1-27.4, 27.6, Book 1							
V		PRACTICALS	30						
	Condur □ deci expe liste cou	act any 5 experiments from the given list and 1 additional experiment, ed by the teacher-in-charge, related to the content of the course. The 6 th iment may also be selected from the given list. Other experiments here may be used as demonstrations of the concepts taught in the							

Neces	sary theory of experiments can be given as Assignment/ Seminar.	
1	Mapping of the magnetic field lines of a bar magnet.	
	 Fix a paper on a drawing board kept on a table and place the bar magnet at the center along the magnetic meridian. Using a small compass needle, map the magnetic field lines of the magnet placed with north pole pointing south. Mark the null points (where the horizontal component of Earth's magnetic field, Bh cancels the field due to magnet) along the axial/equatorial line and measure the distance, 2d, between them. 	
	• Calculate the moment of the magnet. (a) $m = \frac{4\pi}{\mu_0} \frac{(d^2 - l^2)^2}{2d} B_h$	
2	Study the variation of the magnetic field strength of a bar magnet using a smartphone magnetometer	
	 Using a smartphone magnetometer Using a smartphone magnetometer, measure the strength of the magnetic field of a bar magnet, along the axial and equatorial lines and plot the data. Magnetometer in the Phyphox app may be used to get the data after locating the approximate position of the magnetometer 	
	sensor. <u>https://phyphox.org/wiki/index.php?title=Sensor: Magnetic_f</u> <u>ield</u> • Fit the theoretical formulae to the data and obtain magnetic dipole moment. Along the axial line $B = \frac{\mu_0}{4\pi} \frac{2md}{(d^2 - l^2)^2}$ and	
	along the equatorial line $B = \frac{\mu_0}{4\pi} \frac{m}{(d^2 + l^2)^{3/2}}$	
3	Determine the moment of a bar magnet and Bh using a deflection magnetometer and a box type vibration magnetometer	
	 Determine m/Bh using deflection magnetometer in Tan A position and mBh using box type vibration magnetometer. Hence calculate the moment of the magnet and Bh. If the same magnet was used, compare the dipole moment with that of experiment 2 and 3. 	
4	Circular coil- Verification of Biot Savart's law and determination	
	of Bh	
	• Move a compass through a platform along the axis of the coil carrying a study current. Note the deflection of the needle and plot magnetic flux density $(B = B_h tan\theta)$ as a function of	
	 distance. Optional: Smartphone magnetometer may be used to measure the strength of the magnetic field along the axial line and plot the data. <u>https://phyphox.org/experiment/magnetic-field/</u> Experiment 62 of Book 2 	

		• By varying current and (or) distance of the compass box along the axial line of the coil, note the deflection and hence		
		determine the value of Bh.		
	5	Reduction factor of TG using potentiometer.		
		 Standardize the given potentiometer using a Danial cell or any other constant voltage source and use the standardized potentiometer to find the current through the TG. By observing the deflection in the TG for different currents, calculate the reduction factor. From the magnetic field at the center of a circular coil, deduce the value Bh. 		
[6	Verification of Kirchoff's laws/ Superposition theorem.		
		 Verify Kirchoff's current law at a junction where a minimum of three branches meet. Verify Kirchoff's current law for a network with two loops. 		
Γ	7	Thomson's e/m experiment - Determination of the specific charge		
	,	of the electron.		
		 Measure the ratio of the electron charge-to-mass ratio (e/m) by studying the electron trajectories in a uniform magnetic field. 		
	8	Parallel plate capacitor. (a) verify the relationship between		
		canacitance and the area of the plates (b) determination of		
		capacitance and the area of the plates (b) determination of		
		dielectric constant of thin dielectric sheet		
		• Form a parallel plate capacitor with dielectric material filled		
		between the plates.		
		• Multimeter/ ExpEYES can be used to measure the		
		capacitance. (For a significantly measurable value of the		
		capacitance, use plates of dimension 10cmx10cm, or greater)		
		 Change the area of the capacitor plates and verify the 		
		relationship of the capacitance on the area (Using the same set		
		of plates, the area can be changed by varying the overlapping		
		region of the plates)		
		• By measuring the capacitance for different areas of the		
		capacitor plates and (or) thickness of the dielectric		
		material, determine the dielectric constant of the given		
		material/liquid.		
		https://www.youtube.com/watch?v=lKflkUuFT-U		
	9	Calibrate the ammeter using potentiometer		
		• Standardize the potentiometer using a Danial cell or any other		
		standard voltage source.		
		• Determine the current for at least 8 trials and draw the		
		calibration graph.		
	10	Conversion of Galvanometer to voltmeter and calibration using		
		potentiometer		
		F	1	

	 Determine the value of high resistance required to connect in series with the galvanometer so as it can read 0.1V or 0.2V per scale division. Standardize the potentiometer using a Danial cell or any other standard voltage source. Determine the voltage for at least 6 trials and draw the calibration graph. 	
11	Determination of resistivity of a thin wire using Carey-Foster's	
	Bridge	
	 Find the resistance per unit length of the bridge wire. Determine resistance of the thin wire using the bridge, thickness of the wire using screw gauge and hence determine 	
12	Acceleration of a Freely Falling Body	
	 Use the smartphone acoustic stopwatch to determine the duration of a free fall. Measure the time of flight of a steel ball for different heights and plot a graph of distance vs. time squared (s vs. t^2). Determine g from the graph. Experiment 2 of Book 2. Phyphox app may be used. https://phyphox.org/experiment/free-fall-2/ 	
	ŬK.	
	• Use ExpEyes kit, electromagnet, and contact sensor to determine the duration of a free fall. https://expeyes.in/experiments/mechanics/tof.html	
13	Verification of the Relation of Angular Velocity and Centrifugal Acceleration	
	 Use the smartphone gyroscope and the accelerometer. Attach the smartphone to some rotating arrangements and record the data from the gyroscope and accelerometer. Plot angular velocity Vs acceleration and verify the relation. Experiment 18 of Book 2. Phyphox app may be used. https://phyphox.org/experiment/centrifugal-acceleration/ 	
14	Analysis of Bouncing Balls to Determine Gravitational	
	Acceleration and Coefficient of Restitution.	
	 After doing the experiment, the student should be able to understand the concept of inelastic collision. Measure the time interval between successive bounces using a digital acoustic stopwatch and hence calculate g and 	

	Phyphox app may be used.	
	https://phyphox.org/experiment/inelastic-collision/	
15	Projectile Motion: Energy Conservation	
	• Analyse the motion of the tossing ball/ projectile in the Tracker tool.	
	• Plot time vs the x-and y-components of velocity and acceleration.	
	• Also plot the kinetic energy, potential energy (build data using define tool) and total energy.	
	 https://www.youtube.com/watch?v=x0AWRLvgB28 	
	https://www.youtube.com/watch?v=i07HeUWo8xc	
Books and Refe	erences:	

- University Physics with Modern Physics- Hugh D. Young, Roger A. Freedman, 15th Edition (Book 1)
- Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 2)
- 3. <u>https://phyphox.org/</u>
- 4. https://physlets.org/tracker/
- 5. Introduction to Electrodynamics-David J Griffith, 5th Edition- Pearson

Mapping of COs with PSOs and POs :

	PSO	PS O											
1	PSO												
2	PSO 4	PS O5	PS O 6	PO 1	PO 2	PO 3	PO 4	PO 5	P O	P O			
C O 1	2	1	1	0	1	1	1	1	1	1	2	1	1
C O 2	2	2	2	1	1	1	1	1	1	1	2	1	1
C O 3	2	2	2	0	1	1	1	1	1	1	2	1	1
C O 4	2	1	3	1	0	1	1	1	1	1	2	1	1
C O 5	2	1	1	0	2	1	1	1	1	1	3	1	1

C O 6	2	3	2	2	1	2	1	1	1	1	2	1	1	
-------------	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/ Practical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark		\checkmark
CO 3	\checkmark	\checkmark		\checkmark
CO 4	\checkmark	\checkmark		\checkmark
CO 5	\checkmark	\checkmark		\checkmark
CO 6		\checkmark	\checkmark	

BSc PHYSICS HONOURS- Multi-Disciplinary Course 1

PHY1FM105 PHYSICS IN DAILY LIFE

Programme	B.Sc. Physics Honours							
Course Title	PHYSICS	PHYSICS IN DAILY LIFE						
Type of Course	Multi-Dise	Multi-Disciplinary Course 1						
Semester	Ι	Ι						
Academic Level	100 - 199	100 - 199						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours			
	3	3	-	-	45			
Pre- requisites	High scho	ol level science						
Course Summary	This course explores the use of physics in daily life. Working of the daily use devices, physical principles coming to play in the kitchen and in sports are explored.							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Apply the principles of physics to understand the functioning of common kitchen appliances and the properties of various kitchen materials in everyday cooking scenarios	Ар	F	Instructor- create d exams / Quiz					
CO 2	Analyse the principles of physics to the sport of cricket.	U	F	Instructor- create d exams / Quiz					
CO3	Analyze the principles of physics to the sport of football.	Ар	F	Instructor- create d exams / Quiz					
CO 4Understand the connection between resonance and sound phenomena and analyse the working of photocopier.ApFInstructor- create d exams / Quint									
CO5Understand the working principles of bicycles, air conditioners, sound, and music.UFInstructor- create d exams / Quiz									
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) 									

Metacognitive Knowledge (M)

Detailed Syllabus:

Modul e	Uni t	Content	Hrs (36 +9)	Mark s (50)
		Physics in the Kitchen (Thermodynamics)	10	
I	1	Advantages and disadvantages of using LPG and electricity as energy sources in the kitchen - physics of induction cooktop physics of microwave oven	2	15
		Smoke detectors - the fresh air fan: things to look out for. Purpose and use of different metals as kitchen utensils	2	

FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

	3	Why do cold objects (plastic, metal) break easily – Working of refrigerator.	3			
	4	Noise in the kitchen Dichwester Energy weste in the kitchen and	2			
	4	solutions. Modern gas lighters, weighing scales				
Dagas 15	4 150	161 170 170 186 of Chapter 5, 102 202 of Chapter 6, Book 1				
Pages 15	4 - 139	, 161-170, 179-186 of Chapter 5, 192-202 of Chapter 6, Book 1				
		The Physics of Sports: Cricket (Mechanics)	10			
	5	Physics of pace bowling – use of seam of the ball	3			
	6	Difference between hard & soft pitches on the pace bowling.	1	1		
	7	Spin bowling – reason for ball to spin during later the day.	2			
п	8	8 Magnus effect and its importance.				
	9 The cricket bat: reasons for choosing willow wood, sweet spot of the					
	bat.					
	10	Physics of Hawkeye, Hotspot, Snicko and Super SloMo, no need of	2			
		Rutherford scattering, no need of elaborating equation of Planck's				
		Law.				
Pages 86	-89 of (Chapter 5, 187 - 200 of Chapter 10, 114 - 116, 123-125 of Chapter 7, 164	-181			
of Chapt	er 9, Bo	pok 2				
		The Physics of Sports: Football (Mechanics)	9			
	11	The kick	2			
	12	Forces on the foot, power, the curled kick.	2			
	13	The throw-in, goalkeeper's throw, heading, punching, catching,	1			
ш		receiving, trapping the football.		12		
	14	Airflow around the ball – the boundary layer	1			
	15	The Bernoulli effect, separation of the flow, the turbulent wake, the	2	1		
		critical speed, what happens at the critical speed, speed and range,				
		effect of a wind, the banana kick.				

FYUGP | BSc. PHYSICS HONOURS SYLLABUS 2024

	3	Why do cold objects (plastic, metal) break easily - Working of	3			
		refrigerator.				
	4	Noise in the kitchen, Dishwasher, Energy waste in the kitchen and	3			
		solutions, Modern gas lighters, weighing scales				
Pages 154 - 159, 161-170, 179-186 of Chapter 5, 192-202 of Chapter 6, Book 1						

Pages 19 - 25 of Chapter 2, 33-41 of Chapter 3, 49 - 68 of Chapter 4, Book 3								
		Physics Every day	7					
	16	Sound in air – natural resonances	1					
IV	17	Pendulums and harmonic oscillators, pendulum clock	2	10				
	18	Quartz/electronic clocks	2					
	19	Working of photocopier/ Xerograph	2					
Pages 232-237, 239-240 of Chapters 9, 276-280 of Chapter 10, Book 4								
		Open Ended Module (suggestions only)	9					
	1	Bicycles: Stability, leaning, pedaling						
V	2	Working of air conditioner: laws of thermodynamics & entropy.						
	3 Working of air conditioner: mechanism							
	4	Sound and music (basic ideas only, scale used in western music not						
	needed)							
Pages 97-104 of Chapter 4, 209-219 of Chapter 8, 241-242 of Chapter 9, Book 4								
Books ar	nd Refe	rences:		•				
1. <i>Physics in the Kitchen</i> , George Vekinis, Springer Nature Switzerland, 2023. (Book 1)								
2. <i>The Physics of Cricket</i> , Mark Kidger, Nottingham University Press, 2011. (Book 2)								
3 <i>T</i>	3 <i>The Science of Soccer</i> , John Wesson, Institute of Physics Publishing, 2002. (Book 3)							
4. <i>How Things Work</i> 6th Ed, Louis A Bloomfield, John Wiley & Sons, 2016. (Book 4)								

Mapping of COs with PSOs and POs :

	PS O 1	PS O 2	PS O 3	PS O 4	PS O 5	PS O 6	P O 1	Р О 2	PO 3	PO 4	PO 5	Р О 6	Р О 7
C O 1	1	1	1	1	0	0	0	0	0	0	0	0	0
C O 2	2	1	1	1	0	0	0	0	0	0	0	0	0
C O 3	2	1	1	1	0	0	0	0	0	0	0	0	0

CO4	2	1	1	1	0	0	0	0	0	0	0	0	0
CO5	2	1	1	1	0	0	0	0	0	0	0	0	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam

- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory /Practical Exam	Assignment /Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	\checkmark
CO 3	\checkmark	\checkmark	\checkmark
CO 4	\checkmark	\checkmark	\checkmark
CO 5	\checkmark	\checkmark	\checkmark